A canonical algorithm for log-concave sampling is the Langevin Algorithm, aka the Langevin Diffusion run with some discretization stepsize $\eta > 0$. This discretization leads the Langevin Algorithm to have a stationary distribution $\pi_{\eta}$ which differs from the stationary distribution $\pi$ of the Langevin Diffusion, and it is an important challenge to understand whether the well-known properties of $\pi$ extend to $\pi_{\eta}$. In particular, while concentration properties such as isoperimetry and rapidly decaying tails are classically known for $\pi$, the analogous properties for $\pi_{\eta}$ are open questions with direct algorithmic implications. This note provides a first step in this direction by establishing concentration results for $\pi_{\eta}$ that mirror classical results for $\pi$. Specifically, we show that for any nontrivial stepsize $\eta > 0$, $\pi_{\eta}$ is sub-exponential (respectively, sub-Gaussian) when the potential is convex (respectively, strongly convex). Moreover, the concentration bounds we show are essentially tight. Key to our analysis is the use of a rotation-invariant moment generating function (aka Bessel function) to study the stationary dynamics of the Langevin Algorithm. This technique may be of independent interest because it enables directly analyzing the discrete-time stationary distribution $\pi_{\eta}$ without going through the continuous-time stationary distribution $\pi$ as an intermediary.
translated by 谷歌翻译
作为标准本地模型和中央模型之间的中间信任模型,差异隐私的洗牌模型已引起了人们的极大兴趣[EFMRTT19;CSUZZ19]。该模型的关键结果是,随机洗牌本地随机数据放大了差异隐私保证。这种放大意味着对数据匿名贡献的系统提供了更大的隐私保证[BEMMRLRKTS17]。在这项工作中,我们通过在理论和数字上逐渐改造结果来改善最新隐私放大的状态。我们的第一个贡献是对LDP Randomizers洗牌输出的R \'enyi差异隐私参数的首次渐近最佳分析。我们的第二个贡献是通过改组对隐私放大的新分析。该分析改进了[FMT20]的技术,并导致所有参数设置中的数值范围更紧密。
translated by 谷歌翻译
联合学习是一种新兴的机器学习(ML)范式,其中大量设备集体训练ML模型,而数据仍保留在设备上。该研究领域有一系列独特的实践挑战,为了系统地取得进步,需要策划与此范式兼容的新数据集。图像域中的现有联合学习基准不能准确捕获许多实际用例的规模和异质性。我们介绍了Flair,这是一个具有挑战性的大规模注释图像数据集,用于适合联合学习的多标签分类。弗莱尔(Flair)拥有来自51,414个Flickr用户的429,078张图像,并捕获了联合学习中通常遇到的许多复杂性,例如异质用户数据和长尾标签分布。我们在此数据集上的不同任务中实现了不同的学习设置中的多个基线。我们认为,天赋可以作为推进联邦学习最先进的具有挑战性的基准。数据集访问和基准的代码可在\ url {https://github.com/apple/ml-flair}上获得。
translated by 谷歌翻译
Machine learning models are often susceptible to adversarial perturbations of their inputs. Even small perturbations can cause state-of-the-art classifiers with high "standard" accuracy to produce an incorrect prediction with high confidence. To better understand this phenomenon, we study adversarially robust learning from the viewpoint of generalization. We show that already in a simple natural data model, the sample complexity of robust learning can be significantly larger than that of "standard" learning. This gap is information theoretic and holds irrespective of the training algorithm or the model family. We complement our theoretical results with experiments on popular image classification datasets and show that a similar gap exists here as well. We postulate that the difficulty of training robust classifiers stems, at least partially, from this inherently larger sample complexity.
translated by 谷歌翻译
We demonstrate that it is possible to train large recurrent language models with user-level differential privacy guarantees with only a negligible cost in predictive accuracy. Our work builds on recent advances in the training of deep networks on user-partitioned data and privacy accounting for stochastic gradient descent. In particular, we add user-level privacy protection to the federated averaging algorithm, which makes "large step" updates from user-level data. Our work demonstrates that given a dataset with a sufficiently large number of users (a requirement easily met by even small internet-scale datasets), achieving differential privacy comes at the cost of increased computation, rather than in decreased utility as in most prior work. We find that our private LSTM language models are quantitatively and qualitatively similar to un-noised models when trained on a large dataset.
translated by 谷歌翻译
Machine learning techniques based on neural networks are achieving remarkable results in a wide variety of domains. Often, the training of models requires large, representative datasets, which may be crowdsourced and contain sensitive information. The models should not expose private information in these datasets. Addressing this goal, we develop new algorithmic techniques for learning and a refined analysis of privacy costs within the framework of differential privacy. Our implementation and experiments demonstrate that we can train deep neural networks with non-convex objectives, under a modest privacy budget, and at a manageable cost in software complexity, training efficiency, and model quality. * Google.† OpenAI. Work done while at Google.
translated by 谷歌翻译
This paper proposes a novel self-supervised based Cut-and-Paste GAN to perform foreground object segmentation and generate realistic composite images without manual annotations. We accomplish this goal by a simple yet effective self-supervised approach coupled with the U-Net based discriminator. The proposed method extends the ability of the standard discriminators to learn not only the global data representations via classification (real/fake) but also learn semantic and structural information through pseudo labels created using the self-supervised task. The proposed method empowers the generator to create meaningful masks by forcing it to learn informative per-pixel as well as global image feedback from the discriminator. Our experiments demonstrate that our proposed method significantly outperforms the state-of-the-art methods on the standard benchmark datasets.
translated by 谷歌翻译
The paper presents a cross-domain review analysis on four popular review datasets: Amazon, Yelp, Steam, IMDb. The analysis is performed using Hadoop and Spark, which allows for efficient and scalable processing of large datasets. By examining close to 12 million reviews from these four online forums, we hope to uncover interesting trends in sales and customer sentiment over the years. Our analysis will include a study of the number of reviews and their distribution over time, as well as an examination of the relationship between various review attributes such as upvotes, creation time, rating, and sentiment. By comparing the reviews across different domains, we hope to gain insight into the factors that drive customer satisfaction and engagement in different product categories.
translated by 谷歌翻译
Language models have recently achieved strong performance across a wide range of NLP benchmarks. However, unlike benchmarks, real world tasks are often poorly specified, and agents must deduce the user's intended behavior from a combination of context, instructions, and examples. We investigate how both humans and models behave in the face of such task ambiguity by proposing AmbiBench, a new benchmark of six ambiguously-specified classification tasks. We evaluate humans and models on AmbiBench by seeing how well they identify the intended task using 1) instructions with varying degrees of ambiguity, and 2) different numbers of labeled examples. We find that the combination of model scaling (to 175B parameters) and training with human feedback data enables models to approach or exceed the accuracy of human participants across tasks, but that either one alone is not sufficient. In addition, we show how to dramatically improve the accuracy of language models trained without large-scale human feedback training by finetuning on a small number of ambiguous in-context examples, providing a promising direction for teaching models to generalize well in the face of ambiguity.
translated by 谷歌翻译
IoT sensors, especially video cameras, are ubiquitously deployed around the world to perform a variety of computer vision tasks in several verticals including retail, healthcare, safety and security, transportation, manufacturing, etc. To amortize their high deployment effort and cost, it is desirable to perform multiple video analytics tasks, which we refer to as Analytical Units (AUs), off the video feed coming out of every camera. In this paper, we first show that in a multi-AU setting, changing the camera setting has disproportionate impact on different AUs performance. In particular, the optimal setting for one AU may severely degrade the performance for another AU, and further the impact on different AUs varies as the environmental condition changes. We then present Elixir, a system to enhance the video stream quality for multiple analytics on a video stream. Elixir leverages Multi-Objective Reinforcement Learning (MORL), where the RL agent caters to the objectives from different AUs and adjusts the camera setting to simultaneously enhance the performance of all AUs. To define the multiple objectives in MORL, we develop new AU-specific quality estimator values for each individual AU. We evaluate Elixir through real-world experiments on a testbed with three cameras deployed next to each other (overlooking a large enterprise parking lot) running Elixir and two baseline approaches, respectively. Elixir correctly detects 7.1% (22,068) and 5.0% (15,731) more cars, 94% (551) and 72% (478) more faces, and 670.4% (4975) and 158.6% (3507) more persons than the default-setting and time-sharing approaches, respectively. It also detects 115 license plates, far more than the time-sharing approach (7) and the default setting (0).
translated by 谷歌翻译